IPB                

Здравствуйте, гость ( Вход | Регистрация )


ФорУм - для ума ©
БСЭ; DJVU Библиотека - Основное книгохранилище
 
Ответить в данную темуНачать новую тему
Дальнейшее развитие идей новой арифметики., Расширение содержания некоторых математических понятий.
VikDemakov
сообщение 28.05.2020, 5:17
Сообщение #1


Первокурсник
**

Группа: Member
Сообщений: 31
Регистрация: 3.6.2014
Пользователь №: 226742
Поблагодарили: 2 раз(а)

Защита: 3472-8435-56-263


Опубликована новая статья по арифметике на замкнутых в бесконечности числовых осях. Обоснованы следующие положения:
1)Арифметические операции на замкнутой в бесконечности числовой оси выполнимы для натуральных, рациональных, иррациональных и трансцендентных чисел на этой оси. Арифметические операции с числами на замкнутой числовой оси выполняются по правилам арифметических операций на открытой числовой оси. Если результат выполнения арифметической операции не принадлежит замкнутой числовой оси, то результат необходимо преобразовать в число на замкнутой числовой оси.
Результат выполнения арифметической операции с числами на замкнутой числовой оси должен быть больше нуля на открытой числовой и и не превосходить максимального числа на замкнутой числовой оси.
Если результат арифметической операции с числами на замкнутой числовой оси больше максимального числа на замкнутой числовой оси, то от результата необходимо вычесть максимальное число на замкнутой числовой оси. Возможно, придется вычитать максимальное число не один раз.
Если результат арифметической операции с числами на замкнутой числовой оси меньше нуля или равен нулю на открытой числовой оси, то к результату необходимо прибавить максимальное число на замкнутой числовой оси. Возможно, придется прибавлять максимальное число не один раз.
2)Отрицательные числа и ноль на открытой числовой оси являются усеченным форматом двучленных арифметических операций вычитания с числами на замкнутой в бесконечности числовой оси, начиная с конца этой оси. Полным форматом двучленной арифметической операции вычитания числа 0 является число ∞ - 0 = ∞, полным форматом двучленной арифметической операции вычитания числа 1 является число ∞ - 1, полным форматом двучленной арифметической операции вычитания числа 2 является число ∞ - 2 и т.д. Усеченный формат числа ∞ - 1 является число -1. Взяли только вычитаемое со знаком. Поэтому и называется усеченным форматом арифметической операции вычитания.
Доказательством этого утверждения является совпадение результатов выполнения арифметических операций с отрицательными числами и нулем на открытой числовой оси с результатами выполнения арифметических операций с соответствующими числами на замкнутой в бесконечности числовой оси.
3)График функции y = Sin(x) в координатах на замкнутых в бесконечности числовых осях практически полностью совпадает с графиком этой функции в координатах на открытых числовых осях. Слово практически означает отсутствие отрицательных чисел на замкнутой в бесконечности числовой оси, в результате чего аргумент x не может быть меньше или равен нулю. Однако при некоторых положительных значениях аргумента x функция становится отрицательной или равной нулю. В этом случае значение функции нужно преобразовать по правилам арифметики на замкнутой в бесконечности числовой оси. Такое преобразование нисколько не изменяет вид графика функции по сравнению с графиком этой же функции в координатах на открытых числовых осях.
4)На замкнутой в бесконечности числовой оси комплексных чисел нет. Однако существует преобразование комплексных чисел с открытой числовой оси в положительные вещественные числа на замкнутой числовой оси. Мнимая единица на открытой числовой оси равна корню квадратному из минус единицы. Поскольку минус единица на открытой числовой оси является усеченным форматом двучленной арифметической операции вычитания ∞ - 1 на замкнутой в бесконечности числовой оси, то вместо -1 можно подставить ∞ - 1. Корень квадратный из этого числа существует и равен положительному числу. В результате комплексное число на открытой числовой оси однозначно преобразуется в положительное число на замкнутой в бесконечности числовой оси.
Комплексные числа на открытой числовой оси являются величинами и их можно упорядочить по величине. Для этого комплексные числа следует преобразовать в действительные числа на замкнутой числовой оси.
Поскольку все замкнутые числовые оси подобны друг другу, то для перевода комплексных чисел на открытой числовой оси в действительные числа на замкнутой числовой оси не обязательно выбирать бесконечность в качестве максимального числа на замкнутой оси. Можно выбрать любое число 2, 3, 4,…, 1000001, … Выбор максимального числа обусловлен границами отрезка открытой числовой оси, на котором используются комплексные числа.
5)Арифметика на открытой числовой оси является частным случаем более общей арифметики на замкнутой в бесконечности числовой оси. Этот вывод следует из того факта, что усечение двучленной операции вычитания на замкнутой в бесконечности числовой оси позволяет получить арифметику на открытой числовой оси. Имея систему аксиом для арифметики на открытой числовой оси невозможно с помощью дедукции обосновать арифметику на замкнутой в бесконечности числовой оси. Более того система аксиом для натурального ряда на открытой числовой оси не соблюдается на замкнутой оси.
6)Наиболее близко к арифметике на замкнутой в бесконечности числовой оси подошел Л.Эйлер. При разрешении парадокса Валлиса он пришел к выводу, что «бесконечно большое количество может рассматриваться как граница, пройдя которую положительные числа становятся отрицательными и обратно». Однако ни современники Л.Эйлера, ни потомки не обратили никакого внимание на этот вывод.

В приложении программа со всеми опубликованными статьями автора с реквизитами публикаций и отдельно новая статья.

Прикрепленные файлы
Прикрепленный файл  CleverMutationInfo__.zip ( 3,65 мегабайт ) Кол-во скачиваний: 10
Прикрепленный файл  Statia13.pdf ( 506,33 килобайт ) Кол-во скачиваний: 13
 
Перейти в начало страницы
+Цитировать сообщение

Ответить в данную темуНачать новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



Текстовая версия Сейчас: 4.07.2020, 2:52


Rambler's Top100